CHRPEL HILL CENTER FOR STOCHRSTIC PROCESSES E HERZBRCH
FEB 87 TR-176 AFOSR-TR-87-1895 F49628-85-C -0
UNCLASSIFIED G 12/3

NL




» . b g, e paT L
o
.
[ ot
x
8
Ll
::).:
s.$-
Y
l‘v
[N
N._
\:_'
oA
<)
‘f
H .
',.3
O A
)
e
e
0 fl :
s W2s mos
IO 1z = las
—————
e = - - lm22
) R
3 ,_ THEE £
Eh . il =
G | e
L™ - ' -
R .
28 hre e
e ——— = =
~e
ks t.
‘ !
Ve ;
v
0o A RGCOPY RESOLUTION TLnaR
o

AAAAA

... “.
o

Ay 5

N . oL

-
-

- 8 ® 8 6 0 0 8 0 O 0 9 0 W . ien
i s N P G " (Ve "Wy o " e N
A b '.'f“f'.‘;"u.‘ ol

-" IR NN
Srcaen;

> A
55

ORSE
A

D ~.
"?':'.'
» ‘i"'



% T A A e e E A A Al Al el el dhath Al Bl M 8- oA R A e e Al Al M v
t¢. o e T T W N R W W W T W T Tw T wowswirwTw

U - ' r———; ‘
e rie copy AD-A186 017

UNCLASSIFIED

SECURITY CLASSIFICATION QF THI5 PAGE

t
REPORT DOCUMENTATION PAGE ! \

1e AEPOQAT SELURITY CLASSIFICATION 1. AESTAICT'VE MARKINGS

UNMCLASSIFIED
29 SECLRITY CLASSIFICATION auTHQRITY 3 JISTRIBUTION/AVAILABILITY OF REPOAT

HA Aooroved for public release; Cistribution
25 SECLASSIFICATICN/DOWNGRAOING SCHESULE unlimited

uA

3 o RG CATION REPQART NUMBE A S S, MONIT =) Ao TION REPORT NUMBERI(S)
4 PEIECAMING O ANIZATI [v] msw.“.

Technical Report No. 176

87-1095

68 NAME 3F ICAECAMING JAGANIZAT ON rn, 3F2.CE 5va80L Ta. NAME 3F MONITCRAING SRGANIZATICN

. {f sppucaoie: e
University of lorsh Caroiina AFSSR/NH

6c. ACORESS . City. State ind /P Tode 7o. AODRESS Cuty. State ana ZIP Coae)
atatistics Dent. Bu11q1ng 310 o
°onillips hRall J22-3 Belling AF8, DOC 20332-56448
Chacel Hil1, NC 27%1¢
Ba. NAME OF SUNDOING,SPONSORING 8b. JFEICE 3vyMBO( 3. PRQCUREMENT NSTRUMENT 'OENTIFICATION NUMBER
QRGCGANIZATION ‘If appucaote:
. F42620 85 C (144
aF2SR ni
Bc. AQORESS .City. State mna 2P Coael 10 SOURCE OF SUNGING NOS _ |
Buiiding 310, sa0GAaam | emosecT TASK woRk uNIT § |
Boilina AF2, OC 20332-6443 SLEMENT NO No. Na. No.

i
!
| -
~ Aa !
e TLTLE 'Mcmuc Security C.’uul{:ﬁnom 0. 1 1 02F H L“OA 1.4‘5

Yoint processes in the Plane" ;

12. PEASONAL AUTHOR!S)

Merzbach, Elv

1Ja TYPE OF REPOQRT 13b6. T'ME ICVESRED 14 JATE JF REPQAT . Yr, Mo., Jay: 15. PAaGE COUNT !
Preprint caom _10/86  r09/87 February 1987 36 F
16. SUPPL_EMENTARY NQTATION r"

AR COSATI CODES 18. SUBJECT “EAMS /Connnue on reverse (f necessary and (dentify by block number)

<€z | sAour | sus. 3R Keywords and phrases: Point process, martingale, partial-
. i order, predictability, stopping line, optional increasing
‘ ) path, compensator, intensity, statioparity, orderliness (cued)

19. ABSTRACT Continue on reverse :f necessary ang identify Sy :m_:c_n tumber)

In this survey paper, two-parameter point processes are studied in connection with
martingale theory and with respect to the partial-order induced by the Cartesian coordinates
of the plane. Point processes are characterized by jump stopping times and by their two-
parameter compensators. Properties of the doubly stochastic Poisson process, as pre-
dic_:tability, are discussed. A definition for the Palm measure of a two-parameter stationary
point process is proposed.

»
.
g

o l‘l
L

Yy v v
N0
1“

5l |

DlGH|

ocT 0 7 1387
)y G |

W

I R e A P L S
o ‘F-". L .'.-..".." o .{ o -'}f._f_\-'_‘v':-.(" A '-'_.J' 3

“
T

T

20 NISTRIAUTION/AVAILABILITY JF A8STRACT 21. A8STRACT SECURITY CLASSIFICATION E J
‘ _ —_ oy .
UNCLASSIFIED/UNUMlYEO'G SAME AS APT _ OTIC USERS . bNCLASSIFLED !
|
223 NAME JF AESPONSIBLE 'NOIVIOUAL 22b TELEPHCNE uumasaj.-l‘-J 22¢. JFFICE SYMBOL i
. tInctude Area Code: [V '

. . ~ >, - 0622387 AFQSR/HNHN |
2ommmtrriesn 1) ST\ 919-962-2367 035 | AFOSK/ |
..._";:.' :'.r".r"}";-"' RV WA S N R AT N T, j

KRR SRR O R0 &% AR I DO R AR A A

NEA O TSN




JJAITY CLASSIFICATION OF “H1S PaGe .

18) doubly stochastic Poisson process, Palm measure.

S O e e ek
u‘hﬂ.mxg-‘f.s CCTA R e OIS O Xy :.{-.‘(\’l

"



oy - »
PRCT | RN

.
“- s

- AFOSR-TR- 87-1095
& CENTER FOR STOCHASTIC PROCESSES

‘ Department of Statistics
e University of North Carolina
Chapel Hill, North Carolina

POINT PROCESSES IN THE PLANE
by

Ely Merzbach

Technical Report No. 176

February 1987

Foerald

i l' (.
[l K oL

« e - e
-------

. . ARSI I I A A S I T AT AR I A e A S SR s

....... ._- \:’.-- Py ;-,.". A -'f..‘;’.“‘. ':.._.t‘ ‘(4_’.‘ ~ ..'-; -...;'#‘: .;, ~:_ ‘,, « -« T
° . > - >, -

VMO AT AL WA AP S AN P

.....




-

- - -
-
:

POINT PROCESSES IN THE PLANE

' o, P

oo -
- -
» -
-

[a

Ely Merzbach
Mathematics Department

-y

L

P Bar~Ilan University
il Ramat-Gan, Israel 52100
" and
{g Center for Stochastic Processes
- University of North Caroclina, Chapel Hill, NC
e .
v
s
o
e
N Abstract: In this survey vaper, two-parameter point processes are
) studied in connection with martingale theory and with respect to
“} the partial-order induced by the Cartesian coordinates of the
o plane. Point processes are characterized by jump stopping times
;ﬁ and by their two-parameter compensators. Properties of the doubly
"4 stochastic Poisson process, as predictability, are discussed. A
ﬁj definition for the Palm measure of a two~-parameter stationary
> . .
o point process is proposed.
o
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bi. 0. Introduction
>Z: A point process in the plane is a random distribution of points
-’ in a subspace of the plane, generally the positive quadrant IRE.
13 Whereas the point processes on the real line have particular proper-
% | ties derived from the natural linear order of the real numbers, the
? . case of »lane or generally IRn—point processes seems more difficult
i? due to the lack of total order between the jump points of the process.
E Our main interest here is to study the properties of the point pro-
3 cesses derived by the partial-order structure in the plane. Here we
E treat only the two-parameter case (the plane), but almost every re-
. sult can be simply extended to the n-parameter case, following the
{ natural partial-order in Dﬁi, and sometimes to lattices or general
:% directed sets as it was begun by Mazziotto and Merzbach in [(19].
é; The genaral case in which the parameter set is a o-algebra of
(\ subsets of some space was first studied extensively by J.F.C. Kingman
. [15] and by J. Mecke. Some developments are due to Y.K. Belvayev,
‘;E M.R. Leadbetter [16], R.K. Milne [30], P. Jagers [12], O. Kallenberg
s [14], and J. Neveu [31].
fs This paper is essentially a survey paper, especially on the
.: author's napers on the subject. But clearly, several interesting
‘ directions are not treated at all here, for example the Poisson cal-
culus (see Mazziotto-Szpirglas [21]) and Markov properties which
are understudied up to today (see [19]).
We hope that the techniques developed here could be applied to
i control theory, multi-armed bandit problems, random geometry (eco-
'g logy, astronomy), multi-components machine problems and queueing
vf theory. For example a two-server queueing process Qz can be well
N
»
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®
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described by Qz =QO +Az -Dz where QO is the initial state and AZ and
DZ are point processes. For each z =(s,t), the random variable Qz
can be interpreted as the number of customers waiting in the first
line at time s and waiting in the second line at time t. This kind
of problem occurs where the two lines (or servers) are not in proxi-
mity one to the other, and we don't obtain information from the lines
at the same time. The process Az(Dz) is the number of arrivals (de-
partures) in the rectangle Rz, and is called the arrival {departure)
process.

The paper is divided as follows. In the first section we develop
the basic tools for the dynamical study of two-parameter processes
such as the notions of predictability, stopping lines and optional
increasing paths. Point processes are defined in the second section.
We study simple and strictly simple point processes, compensation
(dual predictable projection) and characterizations of the jump lines
associated with a point process. We present also conditions in order
to obtain strong martingales, and, as example, the one-jump process.
The third section is devoted to the concepts of measures, stationarity
and orderliness with its ramifications, extending some works of
Daley [7]. We treat general results such as Korolyuk's theorem and
Dobrushin's lemma following the approach of M.R. Leadbetter [16].

The notion of stationarity is introduced. Section four is entirely
devoted to the (doubly stochastic) Poisson process. We put here
several characterizations and this process is a good illustration of
the previous sections.

In the last section, we define and study the Palm measure (see

[24])). For one-parameter simple noint processes, it was introduced




\:,: 3

L

N

i- for the first time by Palm (in 1943) and studied by A.Y. Khinchin.
b

R In the sixties and seventies the Palm measure was considerably ex-
f;j tended by Ryll-Nardzewski, K. Matthes, J. Mecke {23], P. Jagers (see
2

'j: [12]), and others, in particular for point processes on a locally

_.:\

ey compact space with a countable basis. A good account of today's

‘ -

,;- theory is given by J. Neveu [31l]. Here we will present a new defini-
e

i} tion for the two-parameter case, which extends the classical defini-
o . . : .

C tion on the line which obtains the Palm measure by the translation
Ky of the probability of the greatest jump point which is smaller than
-~
% . . .

S the origin. For this purpose, the main idea is to look at the jump
- “i‘
fﬁ lines, instead of the jump points, associated with a point process,
@

e in order to obtain a well-ordered increasing sequence of jumps. This
5; new and fruitful technique was already used by Mazziotto-Merzbach

_ -, [19] in other connections.

{

’-. I wish to take the opportunity to thank the faculty members and
j: the staff of the Center for Stochastic Processes at Chapel Hill for
b, its warm hospitality, which permitted me to write this paper in a

. quiet and mathematically encouraging atmosphere.
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1. Notation and general background

The usual notation and the main tools are introduced as fol-
lows: The processes are indexed by points of IRE in which the
partial order induced by the Cartesian coordinates is defined:
let z=(s,t) and 2' = (s',t'), then z <z' if s <s' and t <t', and
z <z' if s <s' and t <t'. We denote z Az' if s <s' and t =2t'. A
probability space (2,F,IP) is given equipped with an increasing
right-continuous filtration {Fz,z eIRi} of sub-o-algebras of F.

2 1 2

For z = (s,t), denote Fl =F and F*" =F and F*= F~- v F
z 4 z z z

(o, t)

The conditional independence property, for everv z, F; and Fi are

(s,=)

conditionally indevendent given Fz' will not be assumed throughout.
Denote by S the set of all the decreasing lines, i.e. L <S if
and only 1if
(1) For all =z,z' ¢L = either z Az' or z' Az.

(ii) For all =z eIRi and z £L, 3z' <L :z <2' or z'

<z.
For each z = (s,t), denote z={(s,t') :t<t'}u{(s',t) :s <s'},
z={(s,t")}:t" <t} u{(s',t) :s' <s} and z=z vz. Clearly z,z S

(but not z). If L,L' ¢S, we denote L <L' if for all z«L, 3z' L'

such that z <z'. This relation defines a pmartial order in S. L <L’

will mean L <L' and LnL'=¢. Also z <L will mean z <L.
LAL' = sup{L" :L" <L and L" <L'}
LvL' = inf{L" :L <L" and L' <L"}.

Let A be a subset of IRE, the Debut of A, denoted DA will be the

areatest element of S such that z <DA*>z £ A. (For example, D{z}=5l)

A random decreasing line L : 2 >S is called a stooping line if

for every z eIRz, {w:2z <L(w)} er. A stopping point Z is a random
+
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JH ooint such that Z is a stopping line. L is called a stepned stoo-
e
b
o ving line if for every w ¢ ®, the set of the minimal points of L (w)
- is denumerable and is finite in every bounded domain. A random in-
.3
}: creasing path T is called an optional increasing path if for every
N
N stopping line L, DLnF is a stoppi .g point.
} . In the product space Q xIRi, the predictable (resp. l-predict-
¥
24 . . . .
;J able, 2-predictable, *-predictable) o-algebra is defined to be the
]
b
.\‘ 3-algebra generated by the sets F x (z,2'], where F er (resp. F gF;,
) *
. F»:Fi, F er) and (z,2z'] is the rectangle {f :z <% <2'}; it is de-
-4 1,2 % 2 2 :
- noted P (resp. P ,P°,P ). In Q xIR+ XR+, another predictable o-
' \" ~
- algebra is needed: P is defined to be the o-algebra generated by
d 1 ) -
= the sets F X(zl,zl] x(22,22] where F thup(zl,zz), and every couple
o
’:j taken from (z,,z;]  (z,,25] satisfies the relation A. A stopping
L .
- line L is called predictable or announcable if its graph -L_ =
( {(w,2) :2 <L(w)} is a oredictable set.
‘Ca
¥ ,f"
‘& A process A= {Az,z sRi} is called increasing if its increment
)
" {.‘ v .
.;; on every rectangle (z,z'] is nonnegative:
' = - - + > . 1 11—
;3 A(z,z'] Az' A(s,t') A(s',t Az 20 The difference of two in
} creasing processes is called a process of bounded variation. Let us
f: introduce the different kinds of martingales used below. Let
i M=={Mz,z sRi} be an adapted and integrable process. M is a weak
:%, martingale if E[M(z,z']/FZ] =0, M is an i-martingale if FZ is re-
:{: placed by F; (i=1,2), M is a martingale if E[Mz,/FZ]'=Mz (which is
‘;:‘
_ equivalent to say, where the conditional independent property is
Iy
D! satisfied, that it is a l-martingale and a 2-martingale and a one-
=
G54 parameter martingale on the axes), and M is a strong martingale if it
'.j}'
®
B
D ".-
2 ‘:\'.-_ """"" et ’~-" -_:..-'--'_‘ " - LR Sl W AT COL I St A L N - - . R ~ o - - - RS
) . - - - - -,
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o 6
;fﬁ is a martingale and E[M(z,z']/F;] =0, for every z <z' in IRE (see
‘fﬁ [25]). To every increasing integrable and adapted process A, we can
. associate its dual predictable (resp. i-predictable, i =1,2) pro-
M‘N‘ - .
’}j' jection denoted A" /resp. A(l), i=1,2 ). It is characterized to J
W
f‘% be the unique predictable (resp. i-predictable, i =1,2) increasing

2.

\ .

‘2 process such that A -ATr (resp. A-—A(l), i=1,2) is a weak martingale ‘
o

(

g {(resp. i-martingale, i =1,2) [28]. Let X = {Xz,z emi} be a right-

*"

. continuous process (lim X_, =Xz) possessing limits in the other

: z<z'
‘\‘J z'»z

Iy

:}: quadrants, and denote its jump at z = (s,t) by the following:
“:-":' WX =X -X - X +X AlX =X =X and AZX =X -X
or Stz T %z (s™,t) (s,t™) z=’ z ‘'z (s™,t) z “z “(s,t7)°

Q Therefore AX =A1X -AlX - =A2X -A2X - . Moreover, if X 1is

ot z z (s,t™) z (s=,t)

increasing then the set of its discontinuous points is constituted
by a countable number of semi-lines parallel to the axes and if X is 1

)
{ ' also adapted then this set is a countable union of stepped stopping

lines [20].
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AN
o 2. Point processes
.\?. 5
o Definition: A right-continuous process M =1M2,z iIR+} is called
j;f a plane point process if
o . . :
§¥ (i) M vanishes on the axes and takes its values in Mui=x},
<4 . . |
'-) (ii) M 1s increasing,
t
' (1iii) M is adapted (with respect to a given filtration {Eﬂz‘;Ei:).
= . 2 .
N In [27] we required also that for every z 51Ri, AMZ,AlMZ,q M, <0,1}. Here,
% a process satisfying this oroverty will be called strictly simple, and if we re-
{;x qﬂxecxﬂy:&% < {0,1}, the process will be called simple. It is clear
u _
L that if for every z :IRE, ;lMZ,AZMZ £{0,1}, then M is strictly simple.
L
N For all z, we have Mz = :z'“zLMz" therefore M can be characterized
. =
N as an adapted discrete measure which is a linear combination of
%3- Dirac measures Znanaq on the random jump points {Zn}, e.g. the set
e “n
( - of the (different) voints such that AMZ #0.
n
~ To every point process M, we can associate another point process
e
N
egz M* which is simple, defining it by Ensz . XNotice that M* is not
L) -
i ‘.._'. n

necessarily strictly simple, but, as a consecuence of the fcocllowing

O

N proposition, we can associate to M another point process M**, which
S
e . . . . . . .
Py 1s strictly simple, by deleting for every n the jump point Z_ which
P n
LS . . . . .
T belongs to vertical or horizontal lines generated by 1Zm,m “n;.
) . . . . . . . .
u? Proposition 2.1l: M is a strictly simple point process if and onlv if
o
”j IP{1(L) = 0 or 1 for every segment L parallel to one of the axes' =1.
.
= Proof: Supnose !l is strictly simple, and let L be a segment paralliel

L
'

XN
VoA

tc say, the first axis and that M(L) »1. Then there are at least

s
SashSS

two consecutive points z = (s,t) and z' = (s',t) on L which are jump
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eiﬂ

{}f points ;MZ =:MZ, =1, Since M is strictly simple, we obtain

l?x‘ llM =A2H =1 and therefore M, ,_ =M, , .-, =M -,. We can
< z! z' (s'7,t) (s',t7) (s'™,t7)

lgu suppose that s <s'. If M is constant on the interval {s,s'), then
Sty there e no jump voi i s,0),(s', . I\ - =\

o ar jump voints in ((s,0),(s',0)) Thus Ys = 1) ~ sty

"y and M, ,- .-, =M -, whi a Moo= - . i icts
3 (s'=,t7) (s,t) hich means that 12 w(s,t ) This contradicts
. 2

NN the fact that 1M, =1.
:5?: Conversely, suppose the condition of the proposition is verified
QAN
e and suppose that there exists a voint z such that ;lMZ >1. Then, at

P least one of the segments of z has a M-measure greater than 1, which
L <
1O . . _

Sy contradicts the given condition.

o

t Coming back to the jump points {Zn}n of the voint process M, note

KA,
;i{ that they are not, in general, stopping points and therefore we can-
..

}ﬂj not expect to characterize M by its jump points. However, if M is

- .)'
 { strictly simple, the jump points {Zn}n are characterized by the fol-
.-:‘." , .
Iy lowing properties:

o . .
V- (1) 2,=(0,0) and if Z_ == then Z_ == for all m >n.

.‘:-- O n m
C). (ii) For all n such that Zn <=» then anzzn for all m >n.

n”"‘l

> Mo = .s. M = T I, .

-7 (ii1) For all n =1, Zn 1l a.s. and dz nIthSZ}
-fﬁj (iv) For everv random voint Z such that :an(rnfznj) is evanescent,
o
Aty . - oy

géf we have ZHZ =0 a.s., and if moreover Sz;n(u;zng) is evanescent,

M 2 . L. . i

o 11H2 =M, =0 a.s. (This condition means that if AlMZ =1 then there
S exists an integer n such that Z gfn and if moreover &3—1MZ =1, then
S _

", there exist integers m and n such that Z =7hw2m.)
AN Conversely, let {Zn}n be a sequence of stopping points satisfying
e (i) and (ii). Then the process M defined by M, =k -1 where k is the
:¥’ number of sets [Zn,m) which contain the point 2z, is the strictly sim-

ple point process ‘2

nn’
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b In the same spirit, we can define the concept of multivariate
w0
i,
B plane point process using the notion of discrete measure, since the
A}
Yt couples of random variables (Zn’xn)n>l cannot characterize a multi-
IS E

ig variate point process. We consider a Lusin space E and an extra
-\.:

:~' point A. A multivariate point process is the following discrete
N 2

;: random measure on IR <E:

:-.

N
Wi t(widz,dx) = J I s (dz,dx)

- o lwy ’ = > . ) = [; ’

= ‘ o VA it X [

i nel ‘Zn(w) < (z_(u), n( ))

Y
- *+ where S denotes the Dirac measure located at point a,
o~

\‘nl - . . . . .
‘x} + the random points {Zn}n satisfy properties (i) and (ii) from above,
(o .
B N . . I N

® + {X : are random variables in Eu<:},

> n’'n

Ay

. Xn(w) =4 if and only if Zn(w) =,

13

For each Borel subset C of E, the process

L 3 T

Py

M, (C) =M(IR_<C) = é Ity <3 LX) is adapted.

v nxl n

..'J

"-l

"l . 13

~ Note that i1if E reduces to one point, then MZ(E) reduces to an

el
;-\J
)»' ordinary strictly simple point process.
S As in the one-parameter case, we can prove and characterize the
Wi
’jx existence of the dual predictable projection of a multivariate

"

4:‘.

.Y point process [27].

o
b Let us now introduce the following sequences of random lines
LN

:3 associated with a given point process M. Define
2 Crv oo P S : - ‘
" L1 1 D{M 21} AnZn, and for n >1, define Ln D{z:AM -1,L 23

- 2 2 n-1
!
‘:ﬁ {which is equal to Ak K for all the integers k such that

N

{ —

< LI N

“..(' Ln_l Zk) and Ln D {MZ >n }
o

v,

H.-"

LJ

) »

=Y,

"‘-, k‘,-J-._, et PR f~"f -f'f- ERSA ; ‘-"u",-'.‘-\.‘-.“'\'*-'-'-."x“\. s ~.'f“4."~.‘~‘r-‘-' '*
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or {L'}n_ which
n n=1l

Proposition 2.2: Any of the sequences {Ln}:=l

satisfy the respective following properties characterize the strict-
ly simple point process M.
(1) For all n, Ln and LA are stepped stopping lines,
(ii) The sequences{Ln}n and{LI'l}n are increasing,
(iii) €Ln}n is disjoint: SLn:;ZLmE =% for m#n,
(iv) For all m#n, for all w <Q, the set :Lé(w)i“:LA(w)Q is

countable. Moreover these lines satisfy

2 Tcu TL D=, 27 Seu OL'7.
n n n n n n n n

Proof: [27] Let the seguence {Lé}n satisfying (i), (ii), (iv) be
given and construct the following bounded variation process:

3 L]
0 if 2 <Ll

= ] LI < '
B n if Ln z Ln+l

if for all n, Lé <z.

8

This process is adapted and can be decomposed by B =M -N where

M_ == I N_=-2I

" s i i
2 2t e {*Bz'=+11' 2 2,221{382'2_1} are adapted and increasing

processes. M is the process associated to the sequence {Lé}n. The

same holds for the sequence {Ln}n.

Prooosition 2.3: If M is a strictly simple point process such that

+$2MZ —AMZ=2 1s not a stopping

every random point Z satisfying AlMZ

point. Then for any optional increasing path T, the one-parameter
noint process along this path M' is also simple. Conversely, if

for any optional increasing path 7, the one-parameter process M 1is
a simple point process and suppose that M is increasing, then M is

a strictly simple point process.
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The proof of this proposition is easy since the first pcint of
intersection between an optional increasing path and a stopping
line is a stopping point. This proposition shows that the strictly
simple oroperty is very natural when we extend the simple property

from the one-parameter case.

Turning now to the properties of predictability for a point pro-
cess M, let us call the dual predictable projection of M the compens-
ator of M, denoted M or the predictable measure associated with M,
and if this measure is absolutely continuous with respect to the

Lebesgue measure, denote the density by \2 and call it the intensity

of the point process M. This process can be chosen to be predictable.

(1) -M(Z) +M" is a martingale of bounded variation.

Notice that M -M
We have to note here that it was proved in [19] that even in the
general case where the parameter set is a directed set, every point
orocess can be described as an integer measure on a well-ordered

set, and then the predictable projection and the dual predictable

orojection of a point process can be constructed.

Theorem 2.4: Let M be a simple process whose compensator M is con-

tinuous and M -M is a strong martingale. Then M is strictly simple
and more generally, with probability one, any given optional increas-

ing path contains at most one jump point.

Proof: The main idea of the proof follows Ivanoff [10], except the

fact that M must not necessarily be deterministic. For K <® arbitrary,

define a rectangular grid {Dig)} of [0,K]2, which mesh tends to zero

where n tends to infinity. Let ' be an optional increasing path, A

the event that T contains more than one point, and Bn the event that

(n)
i]

M(D ) »1 for some pair (i,j). Therefore
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v i,j &k, é)(l j) ' H
:o. 3 (k, ?.)7‘(1 j)
o and

“~

i P@) < ] T pae®™ 0 0o e o™ ot vpe ).
£ b3 )2 63) ' 2 i3 n
Al h,Q)#(1,3)
v)

:.:'_‘ Since M is simple, (B )~ 0 as n ~». Now, note that

\'Q
A ; (n) . L L
T:E ‘M(Di,jnr) >0} 5F?k,£) for any pair (k,¢) 2(1i,3), (k,&) #(i,3).

' Thus for any € >0, if n is sufficiently large,

\}
e PO, >0l o) > 0F sEmET) ) MM ar) > 0)
SR

o - (n) - ()
% : EI["le 7V MDAty > 0] s

T
o Finallv, for n sufficiently large, we obtain

v e g (n)
- P (A) < = ¢ L {M(D; inT) >0} + IP(B ),
{ i, k,¢ +J
:::_::§: and therefore
o P(A) = 0. 8
;2 The following proposition was proved by Ivanoff [10].

AT

:::.-" Prooposition 2.5: Let M be a simple point process and suppose that
_'_-I‘_'

';; the conditional independence property is satisfied. Then M -M is
\f:' a strong martingale.

N

SRS

}2{ Let us mention also the following result due to Kallenberg [13],
T

N despite the fact that it is a general result in which the partial
qu order does not intervene.

s
.Eﬁ; Proposition 2.6: Let M be a point process and A cB be an algebra
M
R N .

= containing some basis for IRE. Then the distribution of M* is unique-
Pt
:: ly determined by all IP {M(A) =0} for bounded A - A.
h‘:)':.

.
n'.;l'

'bx - v . e,
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) AN 4 u“'t..r' {0 I "x ; ?
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&
j:: Recall that for any non-negative process X = {Xz,z :IRE}, the
o
W predictable projection of X is defined to be the unique predictable

. process Y ={Yz,z eIRiF such that E[[deAz] =E[szdAz] for every in-

,5: creasing and predictable process A.={Az,z eIRi}. The following pro-
15: position was essentially proved in [27].

! .

A Proposition 2.7: Let M be a point process, Zn its jump points
*& and Ln and LA its associated jump lines. Assume the following
$5 statements:

ﬂN_ (i) M is a predictable process,

?E (ii) The stopping lines {Ln}rl are predictable (announcable),

fiﬁ (iii) The stopping lines {Lﬁ}n are predictable (announcable),

';3 (iv) For all n, the predictable projection of the process IDL':
ng vanishes, !
?ﬁ (v) M is a gquasi-continuous to the left: for every predictable

oS i i _ =0.
S stopping line L, fIDLudM 0
DAY -
- (vi) For every predictable stepped stopping line L, fI— ~dM =0,
k) — L
[\ "
@3 (vii) The dual predictable projection M" is a continuous process,
J
W (viii) The predictable projection of the process I -z o vanishes.
4 . _‘n-_J n
Y- Then (i)<> (ii)<> (iii) and (iv)=> (v)<=> (vi) <> (vii) = (viii).
N
L —
) Returning to the compensator M, it is the unique predictable in-
o creasing process such that M -M is a weak martingale, and can be
vh.'
jﬁ calculated directly as follows.
2 Proposition 2.8: Let M be a simple point process. Then for every
> 2
A% z <« IR
- +’
o (n) (n)
Ly M = = . :
b M, = lim ZE[M(D )| Fain! lim JIP {M(D; ) >0|Fd1,n} |
) neo 1 n-» i
3,:
v
N
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where for every n, {Din)a is a rectangle partition of the rectangle

((0,0),2], d, is the first point of p (M)

. and it is assumed that
i,n i

4

the mesh size of the n partition tends to zero.

Example: There are two kinds of diametrically opposite examples,
the Poisson process that we shall study in detail later and the "one-
jump process" summed up here.

One-jump process: This kind of process was extensively studied by

A. Al-Hussaini and R. Elliott [1,2,3] and also by G. Mazziottc and
J. Szpirglas [22]. Let Z =(S,T) be a stopping point and consider

the point process M = Denote by F the distribution function

Tz,=)"
of Z and by G its survivor function: G(z) =P {z <2}. The predict-
able measure of M clearly depends on the chosen filtration. In the
minimal filtration such that Z is a stopping point (which does not
satisfy the conditional independence property, except in some de-
generate situations), one obtains [22]
_ z
M_ = f I{uss or ng}(dF(u,V))/(l-F(u‘,v‘)).

(0,90)
In the product filtration (which satisfy the conditional independence
property if and only if S and T are independent), one obtains [2]:

ZA2

M, = [ (8G(E))/(G(ET)).
(0,0)

In both cases, M -M is a weak martingale. Moreover if F is continu-
ous, then M is continuous and !l is quasi-continuous to the left.

We will finish this section with the representation theorem.
This theorem is valid only for strictly simple point processes since
the method of proving it is by considering the truncated point pro-
cess as a multivariate one-parameter point process, where the mark

is the value of the process at the second coordinate, and then to use
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the one-parameter multivariate point process representation theorem

P AL

. due to Jacod [11l]. This following representation theorem was proved
Y by Merzbach and Nualart in [27].
E: Theorem 2.9: Let M be a strictly simple point process satisfying
0 the following: M <= for every z eIRi, a.s.; the filtration {Fz} is
) z
= . . o oL
;f: the natural filtration generated by M and verifies the conditional
.
§: independence property, M(l) is continuous in the first coordinate,
1..
and M(Z) is continuous in the second coordinate. Suppose that
. N = {Nz,z-.IRi} is a martingale with respect to the filtration {Fz
W
.-“
e which 1s bounded in any rectangle Rz' Then, there exist two pro-
"
3 '
- cesses Xz and Y(z,z') verifying the following properties:
:* (1) xz is one-predictable and adapted, and Y(z,z') is P-measurable.
ng Also,
st (1)
r
{ [[ix, M (az) <=,
: 20
5t and
: frve, et anm® @y <
R_R
z z
T
s c v el
N for all z,z aIR+.
y (ii) For any z such that Nz <», we have
) ) . . 2) .. i
No= Ny o+ fxem P g —m@en+ [ v, s e @) -m@y - ) @) - mian)
» Z OIO =
R R_R
z zz
- Remarks:
-.'.
.. s
{: 1. Using the continuity properties of the processes M(l) and M(‘)
'*: (on the first and second coordinates, respectively), it can be proved
(%
.-
v,
N2
-
fl
o
b4
-2
P R R R AL Ot R AT LR AR A DR AR NN P o - ,‘ﬁ‘(',u-',,- -,t'-'-"'.-_'.' AL L P
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that the processes Xz and Y(7,J') appearing in the above representa-
tion are essentially unique. From this fact it follows that the re-
oresentation result holds for locally bounded martingales.

Actually, the boundedness property has only been used to assume
N has a right-continuous and left-limited version and also to check

the integrability conditions (i) and (ii).

2. Clearly, a symmetric version of the representation theorem could

also be stated. If we assume that M(l) =M(2) then both representa-

tions coincide and the process Xz is predictable.

0

i’ o+ 2* o
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}ié 3. Measures, orderliness and stationarity
‘ii A useful tool for the study of point processes is the following
oy bimeasure (that 1is, a function of two variables such that it is a

;? measure in each variable when the second variable is fixed). Let M
?ﬁ be a point process and denote by ‘y (or simply by % when there is
E) : no risk of confusion) the bimeasure on the product space

*'\

Ai; (2 ~IRi,F®8) defined by

AN

y(FeB) = [M(B)aP

lﬁ? This bimeasure is sometimes called the Campbell measure or the

AN

QE Doleans measure associated with the process M.

N

1" Note that generally a bimeasure cannot be extended to a measure
jf; on the c-algebra generated by the product space (look, for example,
37 at the Brownian sheet or even at the Brownian motion in which there
(' 1s no extension). However, if M is a point process, since it is in-
Eé creasing and non-negative, it is easy to see that \M can be extenced
Eé to a measure on the product space (2 in ,FoeB).

b,

: We shall suppose from now on that X 1is a Radon measure (that is
é{ finite on bounded sets, M has finite expectation or is integrable).
Eg The measure *(2,+*) 1s called the measure intensity (or sometimes

o, -

:: the principal measure) of the point process.

S

:i: In the classical theory of point processes orderliness is loose-
o

i& ly speaking the property that points are distinct or that probabil-
';‘ istically they are not infinitesimally close. Various definitions
.g; have been proposed and extensively studied by D.J. Daley [7] in the
fE& real case. Notice that the word "orderliness" 1s used here because
‘;. this condition implies that almost surely there exists an essentially
g
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unique ordering of the jump points of the process.
An interesting generalization of the strictly simple property

is the following:

Definition 1: A point process N is almost surely m-orderly if

IP {N(L) =0 or 1 for every m-null set L in IRi} =1,

where m is a measure, generally the Lebesgue measure in IR+2. Note
that the Poisson process in the plane is almost surely m-orderly
(where m is the Lebesgue measure). Conversely, an almost surely m-
orderly process is strictly simple.

Other definitions are taken from Daley [7].

Definition 2: A point process N is (uniformly) Khintchin order-

ly if to each z sIRi and € >0 (to each € >0), there exists
3 235(z,e) (253(eg)) such that

IP {N(D) 22} <e+IP {N(D) 21}
for D a rectangle such that z ¢D and m(D)< 3,

(IP{N(DZ) > 2} <€'IP{N(DZ) >1}

for all rectangles Dz with first point z such that m(DZ) <§8.)

Definition 3: A point process N is ordinary if for every bounded

rectangle D,

inf} P {N(D;) 22} =0,
i

where the inf goes over all the finite partitions {Di} of D into

mutually disjoint subrectangles.

* [
Definition 4: A point process N is (uniformly, m-) analytically
. 2
orderly if to each z eIR+,
|
L e e s T S Y
e " ) w . . ,',,-."" LI o, » - a - L] . - - " . - -
RO I A TR A VI A R R O T R GO F-u e e " 'z*
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lim m(Dp) Y {N(D) 22} =0, where z ¢D
m(D)~+0
(resp.
lim sup , M(D )-lIP{N(D ) 22} =0,

' (D_)~0 z:IR z 2
k m VA T+
O
¢ ) to each L m-null set

N 1

-0 lim m(L ) IP{N(Ln) 22} =0
.,.‘; n-—>»o
[} 5 e}

o where {L_} _. decreases to L).

n n=1

e,
e ) . .

o Proposition 3.1: Let N be an m~analytically orderly point process
W,

I .

) and let m be a Radon measure on IRE. Then N 1s almost surely m-
&,

- orderly. In particular if m is non~-atomic then N is simple, and if
D )l‘

}ﬂ m is continuous with respect to Lebesgue measure then N is strictly
Yt
S ol
b7 simple.
& - Prococf: Let a compact set K in IRi and € >0 be given. Since m is
i .'-"

"’ Radon, then it is finite on compact sets and regular. Therefore to
-

s
o each Borel m-null set L, there is an open neighborhood L, of L such
ML k

o that
: 1

o
}.:, P {N(Lk) >2} < em(L, ).
e

o

) ) . . .
fff A finite number of these neighborhoods, say n, cover K and each m-
'?ﬁ null set belongs to a finite number of such neighborhoods. Now we
‘x:

3h obtain in the usualy way a partitioning of K into disjoint Borel
5
s sets Aj,..., A  with

SO P {N(A,) :2} < em(Ai).
o

Lo

o
L

>,

..‘-

o
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o
'\"?. &
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Therefore

IP {there exists a m-null set L such that N(L) 22}

Itit~13

n
{ " 1 <P N =
HD\N(Ai) = 2) 2 i m(Ai) cm(K) .

i=1 i

Since this holds for any = >0, then this probability vanishes and

we obtain the m-orderly property for sets in K and therefore in the

whole space by the o-compactness property. =
Other results are close to those given by Daley.

Theorem 3.2: Let N be a (uniformly, m-) analytically orderly point

process. Then it is ordinary and therefore N is simrle.

The proof of the first part follows that of Daley (assertion 2
in [7]) since IRi is locally compact, and the second part is similar
to that cf Leadbetter [16].

Relations with the Khintchin orderlyv property involves the fol-

lowing possibly infinite valued measure

'B. =B!.

_(B) = sup{ZIp{N(Bi) >0}, B; <8, B, disjoint, i

i N
i i

This measure is called the parametric measure of N. It is o-finite

1f the point process N is finite (a.s.) on every bounded Borel set.

Theorem 3.3: Let N be a finite and uniformly Khintchin orderly

point process. Then it is Khintchin orderly and therefore it is

ordinary.

Here, too, the proof is essentially the same as given by Lead-

better [16].

The following result is a generalization of Korolyuk's theorem




l-’

f::n'

-
o8 and was proved by Belyavev. A simpler proof of the two theorems was
s
:*f given by Leadbetter in [16], using dissecting systems.

:ﬁ% Theorem 3.4: Let N be a point process. Then

<t

LA

>, N = J * = -
greo~ - (B) = E[N*(B)] yx (G4B)

) I . 2 . . . .
o for every Borel set B in IR . In particular, if N is simple and if
iy

-.‘. . - . . . . - »

A its filtration satisfies the conditional independence property,

o

Yo then ., ', and ‘g coincide on 8.

;3~ Another result, which can be viewed as a converse of Theorem
'f?' 3.2, is the following generalized version of Dobrushin's lemma.

LA

o Theorem 3.5: Let N be a simple point process finite on bounded

i

?ﬁ; Borel sets. Suppose that there exists a seguence of nonnegative
tj‘ real numbers {an} and a function $(t) -0 as t ~0 such that for each
( n and for every rectangle Dn with rational endpoints and same measure
..\.-

3{ devending on n,
s -1 1

a_ < IP{N(D_) >0: "PIN(D_) >1} < ¢(a_).

~ n n n n

U.

\;Q Then the point process N is uniformly Khintchin orderly and uniform-
A
B *'-' .
4;}; ly analytically orderly.
\ -..
o o | | | | |

T Definition: A point process N is called stationary in law if
f .

o, , e

.r:': for every bounded Borel set Bl"" ’ Bn in D?i, the probability law of sets
W

ool 2

;V' (N(Bl +2) 00, N(Bn +z)) does not devend on z(z - IR]) .

Y

Note that if N is stationary in law, then the condition of
N

!'.l. 13 .

‘ol Theorem 3.4 clearly holds. Note also that under stationarity, the

L'

e _ .

RN measure intensity }(2,+) and the parametric measure u(+) are regular
' invariant Borel measures in IRi. Thus they are constant multiples

o

ot

A - . e

) . et LA R AT

AN S ",w:.(.r:;_‘.- N
W o t 4 {
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of the Lebesgue measure m(+) on the plane. That is ~(f,B) =:'m(B),

and 4(B)=.m(B) for every Borel set B where % and : are called the
intensity and the parameter of the stationary voint process, re-
spectively. It is clear that p<* and Korolyuk's theorem states
that in general they are equal. More generally, if the measures
“{2,*) and . (*) are absolutely continuous with respect to the
Lebesgue measure, then their Radon-Nikodym derivatives are called
respectively the intensity and the parameter of the point process.

we obtain the following XKhintchin's existence theorem.

Theorem 3.6: Suprose N 1s a simple point process which is station-

ary in law. Then N 1is both uniformly Khintchin orderly and uniform-

lv analytically orderly, and

lim m(D )_lH>fN(D ) >0} =% =y
n n
n—‘b
where {Dn-‘_1 are rectangles such that {m(Dn)}n is a strictly decreas-

ing seguence to zero. Moreover if N is also almost surely an m-

orderly process, then it is m-analytically orderly.
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4. The (doubly stochastic) Poisson process

The two-parameter doubly stochastic Poisson process was defined
and studied by several authors, see for example J. Grandell [9].
In the deterministic c=se, the Poisson process was defined and con-
structed by Kingman [15] and by Neveu [31] and studied by Yor [36]
and Mazziotto-Szpirglas [21]. A simple construction of the Poisson
process by nonstandard analysis methods was given in Manevitz-
Merzbach {17]). In fact, this process has already been used many
years ago in several problems in spatial statistics.

Definition: Let M = {Mz,z eIRi} be a simple point process, and
.et ={Xz,z sIRi}be a nonnegative, F?O,O)—measurable and integrable
process. If for all z <z' and u < IR,

iuM(z,z']{F*] iu

Il

Ele exp{ (e’ -1) [ x.agl.

Then M is called a F*-~doubly stochastic Poisson process. If ) is
deterministic then M is called a F*-Poisson process, and if moreover
i 1s constant (in z) then M is called F*-standard Poisson.

I1f the filtration is omitted, we take the filtration generated
by the process. In fact the Poisson process can always be chosen
right-continuous with left-limits and the filtration generated by it
is right-continuous and satisfies the conditional independence
property. Therefore, the Poisson process (as the classical defini-

tion) is a F*-Poisson pbrocess with respect to its filtration. The

Poisson process has many characterizations. Before we mention them,

notice that the compensator of the doubly stochastic Poisson process
M is M =[x,d5 and therefore has a density X which is called the in-

tensity of the process M.

_‘ ‘. h'( 'Fn j'}u L .. f. .‘\"y '~ "‘-!\"r -‘-_q", EC -'\.‘_\{"
J L)

ae \ -g-»n.. "N\\'\.*"\\-
n N, ,l‘!. 'O 'o'\':‘"r I" %"‘u“' ", N, P it Nt |(.'
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If M is a Poisson process, then it 1s gquasi-continuous to the

:
:\ left in the following sense: For every predictable stopping line L,

Ei fI_LﬁdM =0, which is equivalent to saying that the dual predictable !
:i vrojection M’ =M is a continuous orocess. This means also that for N
Ol

i all n, the predictable projection of the process I’L - vanishes. ﬂ
;5 The stopping lines {Ln} are inaccessible (where {Ln} are the jump

.é lines associated with M). Moreover, the jump points of M are not

- stopping points. (The oroof of these facts can be found in Merzbach-

Nualart [(27]).
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Theorem 4.1: Let M be a strictly simple point process. M is a

F* doubly stochastic Poisson process if and only if its compensator

.'l-_§

M is F?O O)-measurable and M -M is a strong martingale.
’

»

a a0 el
CA I LN

This theorem was proved in [26], without using the conditional
y independence property.

. In the deterministic case we have other characterizations.

! Theorem 4.2: Let M be a point process. The following assertions

are equivalent.

oy
[} .
M- {1) M 1is a Poisson process.

AS . . : .
Sﬁ (2) M has independent increments, and there exists a nonnegative
rl deterministic function XZ such that for every rectangle D,

=

> M(D) ~P(f>_dz).
i . PA

", D
= (3) M is strictly simple, its compensator M is deterministic and .
o M-M is a strong martingale.

. (4) M is strictly simple, its compensator M is deterministic, M -M

is a martingale and the filtration satisfies the conditional independ-

. ence property.
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This theorem was essentially proved by J. Mecke and by F.

Papangelou [33], but a simpler proof using martingale theory can be

found in [26].

Theorem 4.3: Let M be a point process. The following assertions

are equivalent.

(1) M is standard Poisson.

(2) M has independent increments and there exists a positive con-
stant )\ such that for each rectangle D, M(D) ~P{(Am(D)).

(3) M is strictly simple, MZ -\Ast is a strong martingale for some
constant A, and every z = (s,t).

(4) M is strictly simple, Mz -Ast is a martingale for some constant
\ and every z = (s,t) and the filtration satisfies the conditional
independence property.

(5) There exists a positive constant A such that for every rectangle
D with first point d, we have

P {M(D) =1} F*} =im(D) +o(m(D)), IP {M(D) >1]| Féf} =o(m(D)).

(6) The jump points {Zn} of M have polar coordinates (Gn,rn) where

:n are i.i.d. with en ~yUfo,2n], ror Y, independent such that there

exists a constant XA satisfying w(ri —ri_l) ~Exp(A).

(7) M is strictly simple, has independent increments, and for

every B finite union of rectangles, IP{M(B) =0} = e—Xm(B)

where )\ is
a positive constant.

(8) M is strictly simple, has independent increments, M is a.s.

finite on every bounded Borel set and for each 2z eIRi, P {M({z}) =0} =1
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(93) M has independent increments and for any Borel set B, there

exists Borel sets {B } covering B such that for any z ¢B, we

n=1

Bn) <1 and M(“Z{B
n n

have M(» Bn) =0 IP a.s.

z:B

(10) For everv z :IRE, the distribution of the point process

M+1I is the Palm measure IP_ at the point z.
[z,») z

This is a very heterogeneous theorem, but shows several different
approaches to the Poisson process. The four first assertions are
proved as in Theorem 4.2 . (5) is a classical result (see for exam-
ple the book of Cox-Isham). (6) is also a simple property which
intervene in some geometric problems. (7) is a particular case of
(8) which was proved by Prekopa. (9) is a generalization proved bv
Brown-Kupka [6]. (10) is an interesting application of Palm measures.
It was proved by Jagers [1l2].

Let us now study the problem of transforming a two-parameter point
Drocess into a Poisson process by means of a two-dimensional time change.

In the one-parameter case, it was done by P.A. Meyer {29] and ex-
tensively studied by F. Papangelou [32], by a family of stopping
times. As it was shown in [26], a point process cannot be time
changed in a Poisson process by a family of stopping points. Never-
theless, it was proved in [26] that it is possible to do it by a

family of stopping lines.

Theorem 4.4: Let M be a strictly simple point process such that

M-M is a martingale and M have a density Xz. Suppose that the con-

ditional independence property is satisfied. Suppose also that the

function s »[Bxs udu is non-decreasing for all t >0 and tends to in-
’

finity with t (or the same after exchanging s and t). Then there
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l,. . . . . <~ N
ASA exists a family of stopping lines {Lz,z eIR+} such that M(LZ) is
13N
fﬁ' a standard Poisson process.
1o . .

N The next result related to Poisson processes is the representa-
‘i: ) tion theorem for Poisson processes, proved by Yor ([36]. Although
‘~ it is a particular case of our general representation theorem
- (Theorem 2.9), it is interesting for itself.
.r
! Theorem 4.5: Let X be a square integrable martingale with respect
]

to a filtration generated by a standard Poisson process M. Then
;;j there exists a constant XO' a square integrable process
Lt ? ={¢Z,z sIRi} and a square integrable ﬁ—predictable process
b
{w zZ,,2 ¢ R%} such that for every z
2,02, 1772 +

3 1°72
X z z z
o = + ‘ - cYy 4+ - =) s
X, =X, f q‘)g(dMg Ad &) / / W, o (AM_ =2dz ) (A, -)dz,);
" (0,0) (0,0) (0,0) "1772 1 2
-~ and this decomposition is unique.
%S

5 Let us also mention in this section results in convergence of
g point processes to Poisson processes, which were proved bv Ivanoff
(10].
- Theorem 4.6: Let {M(n)}n be a sequence of simple point processes,
5; such that the sequence of compensators M(n) are continuous and
5y satisfy ﬁ;n) p ﬁz for each z eIRi where M is a continuous determin-
ﬁ% istic function. If {M;n)} and {ﬁén)} are both uniformly integrable
T for each z eIRi, or if there exists a bounded sequence of stopping
oI _
$: lines {L } such that {M(n)(Ln)z} is uniformly bounded, then
.
ﬁ ‘ Mn n:mM in distribution, where M is a Poisson process with compensat-
RS
s or M.
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We conclude this section by computing the laws of the stopping
lines {Ln} associated with a Poisson process. Let { be a stepped
line of separation with n exvosed points: zl,..., z, - In S, the

Hausdorff metric is well defined; it is the same that the metric

defined between the compact subsets of IRi. In other words, if ('

is another line of separation, we have

aw,e") =sup , ld(z,2) -d(z,2") | =max{ swp d(z,(0,2'}]), sup d(z,[0.{}):,
z»:]R+ z=[0,4] z-[0,£')

where d(z,A) = infz,cAd(z,z') and this last term is the "sup" dis-
tance 1in IRE. Denote V(£,h) ={{¢':{' line of separation: £<{' and d(£,£')< h!.

It is an interval in S of length h.

Proposition 4.7: Let {Ln}n be the jump stopping lines of a Poisson

process in IRE with intensity X. Then

n 2
(i) ®{L, V(L,h)} = e M0 ED) 1y 7R
i=1
' n .2
(ii) (L -vV(L,h)|L ,=2'} = e " ([& 8D} 1 _o7h7,
n n-1
i=1
p
(iii) IPhEIk,Lk<L{Zn,n€IN}}
n
n -lz| n ~|Rz.URz.‘l -l v R, |
= 1-lim(Je X -Je T3 4llspfe KLk, |

n»e k=1 i<j

Moreover, these probabilities characterize the laws of {Ln}n where
£ and €' are stepped lines of separation with a finite number of
exposed points. The proof of this proposition was given by Mazziotto

and Merzbach in [19].
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:E 5. Palm measures
:;? Intuitively, the Palm measure of a process is the conditional
f distribution of the process given that the process has a jump at the
- origin or more generally at a fixed point z. If N has an atom at z,
.5 the elementary definition works:

; ’ P <N(B) - I/N({z}) >0} = IP{N(B) - I,N({z}) >0}/P{N(z) >0}

W

i: where B is a Borel subset of IRE and I a set of integer numbers.
S More generally, write “*(B) =1*(2,B) =E[N*(B)] and assume that it is
\fi a Radon measure. Using the Radon-Nikodym theorem, for every fixed
.és point z (even if z is not an atom of N), the above expression makes
‘Rﬁ sense; and this measure is called the Palm measure of N at point
- z:IP_.
5 .

fg The following two results which were proved by P. Jagers [12]
{AJ show the importance of the notion of Palm measure.

i? Theorem 5.1: The distribution of a point process N is uniquely
fﬂ determined by its Palm measures {IPz,z ,IRE} and »* (),

Theorem 5.2: Assume that * is a Radon measure. Then XN is a

) ‘ U

¢
2 Poisson process if and only if for every z VIRE, the distribution
e of the point process N +I[z o) is the Palm measure P, . (It is
~ ’
-~ property 10 of Theorem 4.3).
h-\ A
j:j In fact, three different definitions can be used in order to
.-‘:.'
o~ define in a precise manner the concept of Palm measure in IR. The

first two were already generalized to a more general space, see for
example Neveu's lectures [31] which give a good account of the dif-
ferent definitions and their relationships. The more natural defini-

tion, very important in several applications, defines the Palm

Tu e T e e , _.-.-. . _. ..._ ’ _. S _~, T e e NN
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3;3 measure by the translation of the probability of the greatest jump
:ﬁxj point which is smaller than the origin. It is the reason for which
:?5 this approach was studied only in the classical case IR in which a
;E; natural complete order is given.

E;: Nevertheless, if we look at the jump lines, instead of at the
|

fig jump points, associated with a point process defined in the whole
1 YN

¢£$3 plane, we obtain a linear order which permits the study of this
fff natural approach.

N Let (G,+) be a topological group, and G the o-field of its
‘EFE Borel sets.

'fx Definition. A (measurable) flow indexed by G on a probability
{::ﬁ space (3,F ,IP) is a family {St,t <G} of functions 8,:2 » 2 such that
é;; (1) éso%t =%s+t' and 90 =identity,

R - (ii) The function (t,w) +%t(w) is a measurable function from
(:ﬁ{ (G - .,GeF) into (2,F).

:‘ (iii) %toIP =P for every t :G.

p-

The simplest example of flow is the translation group {rt,t-‘G}

defined in G by 1_(s) =8 -t.

CRORR(_:

- t
1 L \ . '
e Definition: Let N = {Nt,t -G} be a point process parameterized
by G. N is called stationary if there exists a flow {%t,t <G}
AN _
ix: such that N(”tw,') =Tt[N(w,')].
WA
9
o’ Clearly a stationary point process is stationary in law.
T .
e The following theorem, proved already by Neveu [31] and others
2o in a general framework, gives a general definition of the Palm
W measure.
.*3
“
]

-
-
-

-
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Theorem 5.3: To any point process N = {Nt,t « G} which is stationary
for a flow {St,t ¢ G}, we can associate a unique s-finite measure
IPO on (2,F) such that
E[ff(&t(u),t)dNt] = [[f(w,t)dm drP,
G QG

for every measurable function f:2xG -IR,, m being here the Haar

measure on the group G.

This formula is sometimes called Campbell's formula. For ex-
ample, we obtain that

P, (2) = E[N(F)/}(F)

for any ‘*-non-null Borel set F in G. More particularly if G is a
discrete subset of IR" and N is simple, we obtain the intuitive re-
lation:

P, (7)) = E[IN({O0})] = P{N({0O}) #0}.

Other characterizations of Palm measure and supplementary properties
can be found for example in Neveu [31].
Now, coming back to the two-parameter case, we suppose from now

on that all the processes are "infinite in each quadrant"”, i.e.

N(RY) = W(R2D) = N(R?,
2 2

RS, ={(s,t):s<0,t >0} and IR” = {(s,t):(s,t) = (0,0)}.

Proposition 5.4: If N is a simple jump process, then it can be

written uniquely by
+o0
N(w,*) = ) e (w)

L
n=-» n

| e . . . .
where {Lnr_OO are step stopping lines satisfying

TN N N N L A
N oy A;_ :;.’. _‘../-_:r‘.- o !*- L S *f\
Abpalgah 4 b JL .,A,'_'I. WU R FOT e W M PO W TN M

" O LNt

) = N(IR_2_)= +», where IR3_= {(s,t):s >0,t >0}
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.. <L_l <LO < (0,0) <L1 <L2 < ua and ii?w L = £ >,
Proof: 1If the process was defined only in the positive gquadrant of

the plane, then a unique representation was constructed in [27] and
also in [19] in a very general setting. Here, consider first the

square [-(n,n), (n,n)] and by the same method we obtain a finite

(n)}m'(n)

strictly increasing segquence {Li i=m(n)

of stopping lines which

charges all the jump points of the process in the square:

m' (n)
N = ) £ ,
i=m(n) LFn)
i
where m(n) <0 <m'{(n). Since N is infinite in each quadrant, for n

sufficiently large, some of these stopping lines are passing through
the negative gquadrant IRE. Therefore, we can suppose (up to a new
én) < (0,0) and Lén) is the greatest stopping line

of the sequence with this property. Tending n to infinity, we ob-

indexation) that L

tain the required properties of the vroposition.

Let Sf be the set of the sets of separation in IR2 constituted
by a finite number of intervals parallel to the axes. Each element

of Sf is of the form V?-lzi’ and therefore can be written uniguelv

as a finite sequence {zi}2=l of R°. Now, we can consider the group

of translations on Sf. This oweration is uniquely extenced to the set S The

d:
sets of separation in IR2 constituted by a denumerable number of
intervals parallel to the axes. 1Indeed since IR2 is a locally

compact Hausdorff space with a countable basis, a topological groun

and a topological lattice, then the set C(IRZ) of all the closed

2 .
subsets of IR™ can be provided by a topology such that C(IRZ) is a

o e N
A o 4
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compact Hausdorff and separable space. Moreover, it was proved 1in
[19] that the set S of all the sets of separation is closed in C(IRZ)
and the natural order in S implies that S is in fact a topological
lattice.

Using a convergence theorem of Matheron [18] we verifv that the
addition operation is continuous in C(IR2) and therefore can be
uniquely extended to S. In fact, the definition of the addition
between elements of Sd and IR2 will be enough for our purpose and can

be defined directly.

2 2,

is a topological group we can consider flows {ez,z - IR™:

indexed by IR% Furthermore, if 7 is a measurable random point, then

Since IR

the function SZ:Q +~0 defined by ez(w) = )(w) is measurable.

e
Z (w
The main result is the following theorem which characterizes the Palm

measure by the stopping lines associated with the process. It was

oroved in {24].

+o , . . .
Theorem 5.5: Let N = I _ e; be a stationary strictly simple point
n

process on IR2 which is infinite in each gquadrant, and denote by

the measurable subset of Q defined by 2 ={w:N(w,{(0,0)}) #0!

—_ . 2

= {u:L, (W)~ ((0,00N{(0,0)}) #4, (0,0) ~L_ (w):. Let 2, :L, IR

0 0 0 0
be a random jump point of N. Then the measurable function %Z from
A 0
2 is onto 2 and the Palm measure IPO of the process N can be obtained
by the relation
9ZOOIP = m(LorLl)]Po

which implies that 2 is the support of IPO.
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